Multidimensional inequality measurement: a proposal

List, C.ORCID logo (1999). Multidimensional inequality measurement: a proposal. (Nuffield College working papers in economics 1999-W27). Nuffield College.
Copy

Two essential intuitions about the concept of multidimensional inequality have been highlighted in the emerging body of literature on this subject: first, multidimensional inequality should be a function of the uniform inequality of a multivariate distribution of goods or attributes across people (Kolm, 1977); and, second, it should also be a function of the cross-correlation between distributions of goods or attributes in different dimensions (Atkinson and Bourguignon, 1982; Walzer, 1983). While the first intuition has played a major role in the design of fully-fledged multidimensional inequality indices, the second one has only recently received attention (Tsui, 1999); and, so far, multidimensional generalized entropy measures are the only inequality measures known to respect both intuitions. The present paper proposes a general method of designing a wider range of multidimensional inequality indices that also respect both intuitions, and illustrates this method by defining two classes of such indices: a generalization of the Gini coefficient, and a generalization of Atkinson's onedimensional measure of inequality.

Full text not available from this repository.

Export as

EndNote BibTeX Reference Manager Refer Atom Dublin Core JSON Multiline CSV
Export