A characterisation of all feasible solutions to an integer program

Williams, H. P. (1983). A characterisation of all feasible solutions to an integer program. Discrete Applied Mathematics, 5(1), 147-155. https://doi.org/10.1016/0166-218X(83)90024-0
Copy

It is shown how the dual of Fourier–Motzkin elimination can be applied to eliminating the constraints of an Integer Linear Program. The result will, in general, be to reduce the Integer Program to a single Diophantine equation together with a series of Linear homogeneous congruences. Extreme continuous solutions to the Diophantine equation give extreme solutions to the Linear Programming relaxation. Integral solutions to the Diophantine equation which also satisfy the congruences give all the solutions to the Integer Program.

Full text not available from this repository.

Export as

EndNote BibTeX Reference Manager Refer Atom Dublin Core JSON Multiline CSV
Export