Justifying definitions in mathematics: going beyond Lakatos

Werndl, Charlotte (2009) Justifying definitions in mathematics: going beyond Lakatos Philosophia Mathematica, 17 (3). pp. 313-340. ISSN 0031-8019
Copy

This paper addresses the actual practice of justifying definitions in mathematics. First, I introduce the main account of this issue, namely Lakatos's proof-generated definitions. Based on a case study of definitions of randomness in ergodic theory, I identify three other common ways of justifying definitions: natural-world justification, condition justification, and redundancy justification. Also, I clarify the interrelationships between the different kinds of justification. Finally, I point out how Lakatos's ideas are limited: they fail to show how various kinds of justification can be found and can be reasonable, and they fail to acknowledge the interplay among the different kinds of justification.


picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads