On internally corrected and symmetrized kernel estimators for nonparametric regression

Linton, Oliver; and Jacho-Chávez, David (2010) On internally corrected and symmetrized kernel estimators for nonparametric regression Test, 19 (1). pp. 166-186. ISSN 1133-0686
Copy

We investigate the properties of a kernel-type multivariate regression estimator first proposed by Mack and Müller (Sankhya 51:59–72, 1989) in the context of univariate derivative estimation. Our proposed procedure, unlike theirs, assumes that bandwidths of the same order are used throughout; this gives more realistic asymptotics for the estimation of the function itself but makes the asymptotic distribution more complicated. We also propose a modification of this estimator that has a symmetric smoother matrix, which makes it admissible, unlike some other common regression estimators. We compare the performance of the estimators in a Monte Carlo experiment. Multivariate regression - Smoothing matrix - Symmetry

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads