Toughness and vertex degrees

Bauer, D.; Broersma, H. J.; van den Heuvel, J.ORCID logo; Kahl, N.; and Schmeichel, E. (2013) Toughness and vertex degrees. Journal of Graph Theory, 72 (2). pp. 209-219. ISSN 0364-9024
Copy

We study theorems giving sufficient conditions on the vertex degrees of a graph $G$ to guarantee $G$ is $t$-tough. We first give a best monotone theorem when $t\ge1$, but then show that for any integer $k\ge1$, a best monotone theorem for $t=\frac1k\le 1$ requires at least $f(k)\cdot|V(G)|$ nonredundant conditions, where $f(k)$ grows superpolynomially as $k\rightarrow\infty$. When $t<1$, we give an additional, simple theorem for $G$ to be $t$-tough, in terms of its vertex degrees.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads