Order-invariant measures on fixed causal sets

Brightwell, Graham; and Luczak, Malwina (2009) Order-invariant measures on fixed causal sets Technical Report. arXiv.
Copy

A causal set is a countably infinite poset in which every element is above finitely many others; causal sets are exactly the posets that have a linear extension with the order-type of the natural numbers -- we call such a linear extension a {\em natural extension}. We study probability measures on the set of natural extensions of a causal set, especially those measures having the property of {\em order-invariance}: if we condition on the set of the bottom k elements of the natural extension, each possible ordering among these k elements is equally likely. We give sufficient conditions for the existence and uniqueness of an order-invariant measure on the set of natural extensions of a causal set.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads