Large antipodal families
Csikós, B., Kiss, G., Swanepoel, K.
& Oloff de Wet, P.
(2009).
Large antipodal families.
Periodica Mathematica Hungarica,
58(2), 129-138.
https://doi.org/10.1007/s10998-009-10129-9
A family {A i | i ∈ I} of sets in ℝ d is antipodal if for any distinct i, j ∈ I and any p ∈ A i , q ∈ A j , there is a linear functional ϕ:ℝ d → ℝ such that ϕ(p) ≠ ϕ(q) and ϕ(p) ≤ ϕ(r) ≤ ϕ(q) for all r ∈ ∪ i∈I A i . We study the existence of antipodal families of large finite or infinite sets in ℝ3.
| Item Type | Article |
|---|---|
| Copyright holders | © 2009 Springer |
| Departments | LSE > Academic Departments > Mathematics |
| DOI | 10.1007/s10998-009-10129-9 |
| Date Deposited | 09 Oct 2009 |
| URI | https://researchonline.lse.ac.uk/id/eprint/25411 |
Explore Further
- https://www.scopus.com/pages/publications/67650287956 (Scopus publication)
- http://www.springer.com/math/journal/10998 (Official URL)
ORCID: https://orcid.org/0000-0002-1668-887X