Last exit before an exponential time for spectrally negative Lévy processes

Baurdoux, Erik J.ORCID logo (2009) Last exit before an exponential time for spectrally negative Lévy processes Journal of Applied Probability, 46 (2). pp. 542-588. ISSN 0021-9002
Copy

In [5], the Laplace transform was found of the last time a spectrally negative Lévy process, which drifts to innity, is below some level. The main motivation for the study of this random time stems from risk theory: what is the last time the risk process, modeled by a spectrally negative Lévy process drifting to infinity, is zero? In this paper we extend the result found in [5] and we derive the Laplace transform of the last time before an independent, exponentially distributed time, that a spectrally negative Lévy process (without any further conditions) exceeds (upwards or downwards) or hits a certain level. As an application we extend a result found by Doney in [6].


picture_as_pdf

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads