A representation theorem for a decision theory with conditionals

Bradley, RichardORCID logo (1998) A representation theorem for a decision theory with conditionals. Synthese, 116 (2). pp. 187-229. ISSN 1573-0964
Copy

This paper investigates the role of conditionals in hypothetical reasoning and rational decision making. Its main result is a proof of a representation theorem for preferences defined on sets of sentences (and, in particular, conditional sentences), where an agent’s preference for one sentence over another is understood to be a preference for receiving the news conveyed by the former. The theorem shows that a rational preference ordering of conditional sentences determines probability and desirability representations of the agent’s degrees of belief and desire that satisfy, in the case of non-conditional sentences, the axioms of Jeffrey’s decision theory and, in the case of conditional sentences, Adams’ expression for the probabilities of conditionals. Furthermore, the probability representation is shown to be unique and the desirability representation unique up to positive linear transformation.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads