Rate optimal semiparametric estimation of the memory parameter of the Gaussian time series with long-range dependence
Giraitis, L., Robinson, P. M. & Samarov, A.
(1997).
Rate optimal semiparametric estimation of the memory parameter of the Gaussian time series with long-range dependence.
(Econometrics; EM/1997/323 EM/1997/323).
Suntory and Toyota International Centres for Economics and Related Disciplines.
There exist several estimators of the memory parameter in long-memory time series models with mean µ and the spectrum specified only locally near zero frequency. In this paper we give a lower bound for the rate of convergence of any estimator of the memory parameter as a function of the degree of local smoothness of the spectral density at zero. The lower bound allows one to evaluate and compare different estimators by their asymptotic behaviour, and to claim the rate optimality for any estimator attaining the bound. The log-periodogram regression estimator, analysed by Robinson (1992), is then shown to attain the lower bound, and is thus rate optimal.
| Item Type | Working paper |
|---|---|
| Copyright holders | © 1997 the authors |
| Departments |
LSE > Academic Departments > Economics LSE > Research Centres > STICERD |
| Date Deposited | 27 Apr 2007 |
| URI | https://researchonline.lse.ac.uk/id/eprint/2175 |
Explore Further
- https://www.scopus.com/pages/publications/0002882790 (Scopus publication)
- http://sticerd.lse.ac.uk (Official URL)