Investment timing under incomplete information

Décamps, Jean-Paul; Mariotti, Thomas; and Villeneuve, Stephane (2003) Investment timing under incomplete information. [Working paper]
Copy

We study the decision of when to invest in an indivisible project whose value is perfectly observable but driven by a parameter that is unknown to the decision maker ex ante. This problem is equivalent to an optimal stopping problem for a bivariate Markov process. Using filtering and martingale techniques, we show that the optimal investment region is characterised by a continuous and non-decreasing boundary in the value/belief state space. This generates path-dependency in the optimal investment strategy. We further show that the decision maker always benefits from an uncertain drift relative to an 'average' drift situation. However, a local study of the investment boundary reveals that the value of the option to invest is not globally increasing with respect to the volatility of the value process.


picture_as_pdf

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads