Robust estimation for structural time series models.

Kwan, T. H. (1990). Robust estimation for structural time series models. [Doctoral thesis]. London School of Economics and Political Science.
Copy

This thesis aims at developing robust methods of estimation in order to draw valid inference from contaminated time series. We concentrate on additive and innovation outliers in structural time series models using a state space representation. The parameters of interest are the state, hyperparameters and coefficients of explanatory variables. Three main contributions evolve from the research. Firstly, a filter named the approximate Gaussian sum filter is proposed to cope with noisy disturbances in both the transition and measurement equations. Secondly, the Kalman filter is robustified by carrying over the M-estimation of scale for i.i.d observations to time-dependent data. Thirdly, robust regression techniques are implemented to modify the generalised least squares transformation procedure to deal with explanatory variables in time series models. All the above procedures are tested against standard non-robust estimation methods for time series by means of simulations. Two real examples are also included.

picture_as_pdf


Download

Export as

EndNote BibTeX Reference Manager Refer Atom Dublin Core JSON Multiline CSV
Export