Calculations of extreme sea level rise scenarios are strongly dependent on ice sheet model resolution

Williams, C. Rosie; Thodoroff, Pierre; Arthern, Robert J.; Byrne, James; Hosking, J. Scott; Kaiser, Markus; Lawrence, Neil D.; and Kazlauskaite, IevaORCID logo (2025) Calculations of extreme sea level rise scenarios are strongly dependent on ice sheet model resolution. Communications Earth and Environment, 6 (1): 60. ISSN 2662-4435
Copy

The West Antarctic Ice Sheet (WAIS) is losing ice and its annual contribution to sea level is increasing. The future behaviour of WAIS will impact societies worldwide, yet deep uncertainty remains in the expected rate of ice loss. High-impact low-likelihood scenarios of sea-level rise are needed by risk-averse stakeholders but are particularly difficult to constrain. Here, we combine traditional model simulations of the Amundsen Sea sector of WAIS with Gaussian process emulation to show that ice-sheet models capable of resolving kilometre-scale basal topography will be needed to assess the probability of extreme scenarios of sea-level rise. This resolution exceeds many state-of-the-art continent-scale simulations. Our ice-sheet model simulations show that coarser resolutions tend to project a larger range of sea-level contributions than finer resolutions, inflating the tails of the distribution. We therefore caution against relying purely upon simulations 5 km or coarser when assessing the potential for societally important high-impact sea-level rise.

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads