Tackling nonlinear price impact with linear strategies

Brokmann, Xavier; Itkin, DavidORCID logo; Muhle-Karbe, Johannes; and Schmidt, Peter (2025) Tackling nonlinear price impact with linear strategies. Mathematical Finance, 35 (2). 422 - 440. ISSN 0960-1627
Copy

Empirical studies in various contexts find that the price impact of large trades approximately follows a power law with exponent between 0.4 and 0.7. Yet, tractable formulas for the portfolios that trade off predictive trading signals, risk, and trading costs in an optimal manner are only available for quadratic costs corresponding to linear price impact. In this paper, we show that the resulting linear strategies allow to achieve virtually optimal performance also for realistic nonlinear price impact, if the “effective” quadratic cost parameter is chosen appropriately. To wit, for a wide range of risk levels, this leads to performance losses below 2% compared to a numerical algorithm proposed by Kolm and Ritter, run at very high accuracy. The effective quadratic cost depends on the portfolio risk and concavity of the impact function, but can be computed without any sophisticated numerics by simply maximizing an explicit scalar function.

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads