Combining experimental and historical data for policy evaluation

Li, Ting; Shi, ChengchunORCID logo; Wen, Qianglin; Sui, Yang; Qin, Yongli; Lai, Chunbo; and Zhu, Hongtu (2024) Combining experimental and historical data for policy evaluation. Proceedings of Machine Learning Research, 235. pp. 28630-28656. ISSN 2640-3498
Copy

This paper studies policy evaluation with multiple data sources, especially in scenarios that involve one experimental dataset with two arms, complemented by a historical dataset generated under a single control arm. We propose novel data integration methods that linearly integrate base policy value estimators constructed based on the experimental and historical data, with weights optimized to minimize the mean square error (MSE) of the resulting combined estimator. We further apply the pessimistic principle to obtain more robust estimators, and extend these developments to sequential decision making. Theoretically, we establish non-asymptotic error bounds for the MSEs of our proposed estimators, and derive their oracle, efficiency and robustness properties across a broad spectrum of reward shift scenarios. Numerical experiments and real-data-based analyses from a ridesharing company demonstrate the superior performance of the proposed estimators.

picture_as_pdf

picture_as_pdf
subject
Published Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads