One-shot learning of stochastic differential equations with data adapted kernels

Darcy, Matthieu; Hamzi, Boumediene; Livieri, GiuliaORCID logo; Owhadi, Houman; and Tavallali, Peyman One-shot learning of stochastic differential equations with data adapted kernels Physica D: Nonlinear Phenomena, 444: 133583. ISSN 0167-2789
Copy

We consider the problem of learning Stochastic Differential Equations of the form dXt=f(Xt)dt+σ(Xt)dWt from one sample trajectory. This problem is more challenging than learning deterministic dynamical systems because one sample trajectory only provides indirect information on the unknown functions f, σ, and stochastic process dWt representing the drift, the diffusion, and the stochastic forcing terms, respectively. We propose a method that combines Computational Graph Completion [1] and data adapted kernels learned via a new variant of cross validation. Our approach can be decomposed as follows: (1) Represent the time-increment map Xt→Xt+dt as a Computational Graph in which f, σ and dWt appear as unknown functions and random variables. (2) Complete the graph (approximate unknown functions and random variables) via Maximum a Posteriori Estimation (given the data) with Gaussian Process (GP) priors on the unknown functions. (3) Learn the covariance functions (kernels) of the GP priors from data with randomized cross-validation. Numerical experiments illustrate the efficacy, robustness, and scope of our method.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads