Embedding loose spanning trees in 3-uniform hypergraphs

Pehova, Yani; and Petrova, Kalina Embedding loose spanning trees in 3-uniform hypergraphs. Journal of Combinatorial Theory, Series B, 168. 47 - 67. ISSN 0095-8956
Copy

In 1995, Komlós, Sárközy and Szemerédi showed that every large n-vertex graph with minimum degree at least (1/2+γ)n contains all spanning trees of bounded degree. We consider a generalization of this result to loose spanning hypertrees in 3-graphs, that is, linear hypergraphs obtained by successively appending edges sharing a single vertex with a previous edge. We show that for all γ and Δ, and n large, every n-vertex 3-uniform hypergraph of minimum vertex degree (5/9+γ)(n2) contains every loose spanning tree T with maximum vertex degree Δ. This bound is asymptotically tight, since some loose trees contain perfect matchings.

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads