Maximum augmented empirical likelihood estimation of categorical marginal models for large sparse contingency tables

van der Ark, L. Andries; Bergsma, Wicher P.ORCID logo; and Koopman, Letty (2023) Maximum augmented empirical likelihood estimation of categorical marginal models for large sparse contingency tables Psychometrika, 88 (4). 1228 - 1248. ISSN 0033-3123
Copy

Categorical marginal models (CMMs) are flexible tools for modelling dependent or clustered categorical data, when the dependencies themselves are not of interest. A major limitation of maximum likelihood (ML) estimation of CMMs is that the size of the contingency table increases exponentially with the number of variables, so even for a moderate number of variables, say between 10 and 20, ML estimation can become computationally infeasible. An alternative method, which retains the optimal asymptotic efficiency of ML, is maximum empirical likelihood (MEL) estimation. However, we show that MEL tends to break down for large, sparse contingency tables. As a solution, we propose a new method, which we call maximum augmented empirical likelihood (MAEL) estimation and which involves augmentation of the empirical likelihood support with a number of well-chosen cells. Simulation results show good finite sample performance for very large contingency tables.

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads