Total dual dyadicness and dyadic generating sets

Abdi, AhmadORCID logo; Cornuéjols, Gérard; Guenin, Bertrand; and Tunçel, Levent (2022) Total dual dyadicness and dyadic generating sets Mathematical Programming. ISSN 0025-5610
Copy

A vector is dyadic if each of its entries is a dyadic rational number, i.e. of the form a2k for some integers a, k with k≥ 0 . A linear system Ax≤ b with integral data is totally dual dyadic if whenever min { b⊤y: A⊤y= w, y≥ 0} for w integral, has an optimal solution, it has a dyadic optimal solution. In this paper, we study total dual dyadicness, and give a co-NP characterization of it in terms of dyadic generating sets for cones and subspaces, the former being the dyadic analogue of Hilbert bases, and the latter a polynomial-time recognizable relaxation of the former. Along the way, we see some surprising turn of events when compared to total dual integrality, primarily led by the density of the dyadic rationals. Our study ultimately leads to a better understanding of total dual integrality and polyhedral integrality. We see examples from dyadic matroids, T-joins, cycles, and perfect matchings of a graph.

picture_as_pdf

picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads