Counterfactuals for the future

Bynum, Lucius E.J.; Loftus, Joshua R.ORCID logo; and Stoyanovich, Julia Counterfactuals for the future In: AAAI-23 Special Tracks. Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023 (12). AAAI Press, pp. 14144-14152. ISBN 9781577358800
Copy

Counterfactuals are often described as ‘retrospective,’ focusing on hypothetical alternatives to a realized past. This description relates to an often implicit assumption about the structure and stability of exogenous variables in the system being modeled — an assumption that is reasonable in many settings where counterfactuals are used. In this work, we consider cases where we might reasonably make a different assumption about exogenous variables; namely, that the exogenous noise terms of each unit do exhibit some unit-specific structure and/or stability. This leads us to a different use of counterfactuals — a forward-looking rather than retrospective counterfactual. We introduce “counterfactual treatment choice,” a type of treatment choice problem that motivates using forward-looking counterfactuals. We then explore how mismatches between interventional versus forward-looking counterfactual approaches to treatment choice, consistent with different assumptions about exogenous noise, can lead to counterintuitive results.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads