Towards lower bounds on the depth of Relu neural networks
We contribute to a better understanding of the class of functions that can be represented by a neural network with ReLU activations and a given architecture. Using techniques from mixed-integer optimization, polyhedral theory, and tropical geometry, we provide a mathematical counterbalance to the universal approximation theorems which suggest that a single hidden layer is sufficient for learning any function. In particular, we investigate whether the class of exactly representable functions strictly increases by adding more layers (with no restrictions on size). As a by-product of our investigations, we settle an old conjecture about piecewise linear functions by Wang and Sun [IEEE Trans. Inform. Theory, 51 (2005), pp. 4425-4431] in the affirmative. We also present upper bounds on the sizes of neural networks required to represent functions with logarithmic depth.
| Item Type | Article |
|---|---|
| Copyright holders | © 2023 Society for Industrial and Applied Mathematics Publications. |
| Departments | LSE > Academic Departments > Mathematics |
| DOI | 10.1137/22M1489332 |
| Date Deposited | 25 Jul 2023 |
| Acceptance Date | 20 Dec 2022 |
| URI | https://researchonline.lse.ac.uk/id/eprint/119828 |
Explore Further
- https://www.scopus.com/pages/publications/85163477079 (Scopus publication)
- https://www.lse.ac.uk/Mathematics/people/Christoph-Hertrich (Author)