Exact simulation of Poisson-Dirichlet distribution and generalised gamma process

Dassios, AngelosORCID logo; and Zhang, JunyiORCID logo (2023) Exact simulation of Poisson-Dirichlet distribution and generalised gamma process Methodology and Computing in Applied Probability, 25 (2): 64. ISSN 1387-5841
Copy

Let J1> J2> ⋯ be the ranked jumps of a gamma process τα on the time interval [0 , α] , such that τα=∑k=1∞Jk . In this paper, we design an algorithm that samples from the random vector (J1,⋯,JN,∑k=N+1∞Jk) . Our algorithm provides an analog to the well-established inverse Lévy measure (ILM) algorithm by replacing the numerical inversion of exponential integral with an acceptance-rejection step. This research is motivated by the construction of Dirichlet process prior in Bayesian nonparametric statistics. The prior assigns weight to each atom according to a GEM distribution, and the simulation algorithm enables us to sample from the N largest random weights of the prior. Then we extend the simulation algorithm to a generalised gamma process. The simulation problem of inhomogeneous processes will also be considered. Numerical implementations are provided to illustrate the effectiveness of our algorithms.

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads