The spread of COVID-19 in London:network effects and optimal lockdowns

Julliard, ChristianORCID logo; Shi, Ran; and Yuan, KathyORCID logo (2023) The spread of COVID-19 in London:network effects and optimal lockdowns. Journal of Econometrics, 235 (2). 2125 - 2154. ISSN 0304-4076
Copy

We generalise a stochastic version of the workhorse SIR (Susceptible-Infectious-Removed) epidemiological model to account for spatial dynamics generated by network interactions. Using the London metropolitan area as a salient case study, we show that commuter network externalities account for about 42% of the propagation of COVID-19. We find that the UK lockdown measure reduced total propagation by 44%, with more than one third of the effect coming from the reduction in network externalities. Counterfactual analyses suggest that: (i) the lockdown was somehow late, but further delay would have had more extreme consequences; (ii) a targeted lockdown of a small number of highly connected geographic regions would have been equally effective, arguably with significantly lower economic costs; (iii) targeted lockdowns based on threshold number of cases are not effective, since they fail to account for network externalities.

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads