INAR approximation of bivariate linear birth and death process

Chen, Zezhun Chen; Dassios, AngelosORCID logo; and Tzougas, George (2023) INAR approximation of bivariate linear birth and death process. Journal of Applied Statistics, 26 (3). 459 - 497. ISSN 0266-4763
Copy

In this paper, we propose a new type of univariate and bivariate Integer-valued autoregressive model of order one (INAR(1)) to approximate univariate and bivariate linear birth and death process with constant rates. Under a specific parametric setting, the dynamic of transition probabilities and probability generating function of INAR(1) will converge to that of birth and death process as the length of subintervals goes to 0. Due to the simplicity of Markov structure, maximum likelihood estimation is feasible for INAR(1) model, which is not the case for bivariate and multivariate birth and death process. This means that the statistical inference of bivariate birth and death process can be achieved via the maximum likelihood estimation of a bivariate INAR(1) model.

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads