The dream of ‘editormetrics' - why a FAIR dataset of journal editors would benefit all researchers

Nishikawa-Pacher, Andreas (2022) The dream of ‘editormetrics' - why a FAIR dataset of journal editors would benefit all researchers [['eprint_typename_blog_post' not defined]]
Copy

Editors are among the most powerful actors in the scientific community. By deciding which papers (not) to publish, they can influence public discourse and nurture – or obstruct – academic careers. However, there is little available information about aggregate patterns of scholarly journal editorships. This may change soon, as Andreas Nishikawa-Pacher writes, thanks to a novel dataset created in collaboration with Kerstin Shoch and Tamara Heck that provides new insights into the landscape of journal editing.

picture_as_pdf

picture_as_pdf
subject
Published Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads