Dynamic portfolio optimization with inverse covariance clustering

Wang, Yuanrong; and Aste, Tomaso Dynamic portfolio optimization with inverse covariance clustering. Expert Systems With Applications, 213: 118739. ISSN 0957-4174
Copy

Market conditions change continuously. However, in portfolio investment strategies, it is hard to account for this intrinsic non-stationarity. In this paper, we propose to address this issue by using the Inverse Covariance Clustering (ICC) method to identify inherent market states and then integrate such states into a dynamic portfolio optimization process. Extensive experiments across three different markets, NASDAQ, FTSE and HS300, over a period of ten years, demonstrate the advantages of our proposed algorithm, termed Inverse Covariance Clustering-Portfolio Optimization (ICC-PO). The core of the ICC-PO methodology concerns the identification and clustering of market states from the analytics of past data and the forecasting of the future market state. It is therefore agnostic to the specific portfolio optimization method of choice. By applying the same portfolio optimization technique on a ICC temporal cluster, instead of the whole train period, we show that one can generate portfolios with substantially higher Sharpe Ratios, which are statistically more robust and resilient with great reductions in the maximum loss in extreme situations. This is shown to be consistent across markets, periods, optimization methods and selection of portfolio assets.

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads