A multiagent reinforcement learning framework for off-policy evaluation in two-sided markets

Shi, ChengchunORCID logo; Wan, Runzhe; Song, Ge; Luo, Shikai; Zhu, Hongtu; and Song, Rui A multiagent reinforcement learning framework for off-policy evaluation in two-sided markets Annals of Applied Statistics, 17 (4). 2701 - 2722. ISSN 1932-6157
Copy

The two-sided markets, such as ride-sharing companies, often involve a group of subjects who are making sequential decisions across time and/or location. With the rapid development of smart phones and internet of things, they have substantially transformed the transportation landscape of human beings. In this paper we consider large-scale fleet management in ride-sharing companies that involve multiple units in different areas receiving sequences of products (or treatments) over time. Major technical challenges, such as policy evaluation, arise in those studies because: (i) spatial and temporal proximities induce interference between locations and times, and (ii) the large number of locations results in the curse of dimensionality. To address both challenges simultaneously, we introduce a multiagent reinforcement learning (MARL) framework for carrying policy evaluation in these studies. We propose novel estimators for mean outcomes under different products that are consistent despite the high dimensionality of state-action space. The proposed estimator works favorably in simulation experiments. We further illustrate our method using a real dataset obtained from a two-sided marketplace company to evaluate the effects of applying different subsidizing policies. A Python implementation of our proposed method is available in the Supplementary Material and also at https://github.com/RunzheStat/CausalMARL.

picture_as_pdf

picture_as_pdf
subject
Accepted Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads