Long-range dependent curve time series

Li, Degui; Robinson, Peter M.; and Shang, Han Lin (2020) Long-range dependent curve time series Journal of the American Statistical Association, 115 (530). pp. 957-971. ISSN 0162-1459
Copy

We introduce methods and theory for functional or curve time series with long-range dependence. The temporal sum of the curve process is shown to be asymptotically normally distributed, the conditions for this covering a functional version of fractionally integrated autoregressive moving averages. We also construct an estimate of the long-run covariance function, which we use, via functional principal component analysis, in estimating the orthonormal functions spanning the dominant subspace of the curves. In a semiparametric context, we propose an estimate of the memory parameter and establish its consistency. A Monte Carlo study of finite-sample performance is included, along with two empirical applications. The first of these finds a degree of stability and persistence in intraday stock returns. The second finds similarity in the extent of long memory in incremental age-specific fertility rates across some developed nations. Supplementary materials for this article are available online.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads