A multi-step kernel–based regression estimator that adapts to error distributions of unknown form

De Gooijer, Jan G.; and Reichardt, Hugo (2021) A multi-step kernel–based regression estimator that adapts to error distributions of unknown form. Communications in Statistics - Theory and Methods, 50 (24). 6211 - 6230. ISSN 0361-0926
Copy

For linear regression models, we propose and study a multi-step kernel density-based estimator that is adaptive to unknown error distributions. We establish asymptotic normality and almost sure convergence. An efficient EM algorithm is provided to implement the proposed estimator. We also compare its finite sample performance with five other adaptive estimators in an extensive Monte Carlo study of eight error distributions. Our method generally attains high mean-square-error efficiency. An empirical example illustrates the gain in efficiency of the new adaptive method when making statistical inference about the slope parameters in three linear regressions.

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution-NonCommercial-No Derivative Works 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads