Supply interruption supply chain network model with uncertain demand:an application of chance-constrained programming with fuzzy parameters

Guo, Haidong; Wang, Shengyu; and Zhang, Yu (2021) Supply interruption supply chain network model with uncertain demand:an application of chance-constrained programming with fuzzy parameters Discrete Dynamics in Nature and Society, 2021: 6686992. ISSN 1026-0226
Copy

The downstream supply interruption of manufacturers is a disaster for the company when the demand is uncertain in the market; a fuzzy programming with fuzzy parameters model of supply interruption supply chain network is established by simulating market operation rules. The aim of the current study is to build a fuzzy chance-constrained programming method which is developed for supporting the uncertainty of demand. This method ensured that the fuzzy constraints can be satisfied at specified confidence levels, leading to cost-effective solutions under acceptable risk magnitudes. Finally, through the case of the electronic product manufacturing enterprise, the feasibility and effectiveness of the proposed model are verified by adopting a sensitivity analysis of capacity loss level and minimizing objective function. Numerical simulation shows that selecting two manufacturing centers can effectively reduce the supply chain cost and maintain business continuity.

picture_as_pdf

picture_as_pdf
subject
Accepted Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads