Random perturbation of sparse graphs

Hahn-Klimroth, Max; Maesaka, Giulia S.; Mogge, Yannick; Mohr, Samuel; and Parczyk, Olaf Random perturbation of sparse graphs Electronic Journal of Combinatorics, 28 (2): P2.26. ISSN 1077-8926
Copy

In the model of randomly perturbed graphs we consider the union of a deterministic graph Gα with minimum degree αn and the binomial random graph G(n, p). This model was introduced by Bohman, Frieze, and Martin and for Hamilton cycles their result bridges the gap between Dirac’s theorem and the results by Pósa and Korshunov on the threshold in G(n, p). In this note we extend this result in Gα ∪G(n, p) to sparser graphs with α = o(1). More precisely, for any ε > 0 and α: N ↦→ (0, 1) we show that a.a.s. Gα ∪ G(n, β/n) is Hamiltonian, where β = −(6 + ε) log(α). If α > 0 is a fixed constant this gives the aforementioned result by Bohman, Frieze, and Martin and if α = O(1/n) the random part G(n, p) is sufficient for a Hamilton cycle. We also discuss embeddings of bounded degree trees and other spanning structures in this model, which lead to interesting questions on almost spanning embeddings into G(n, p).

picture_as_pdf

picture_as_pdf
subject
Published Version
Creative Commons: Attribution-No Derivative Works 4.0
Available under Creative Commons: Attribution-No Derivative Works 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads