Doubly invariant subspaces of the Besicovitch space
Sasane, A.
(2022).
Doubly invariant subspaces of the Besicovitch space.
Methods of Functional Analysis and Topology,,
28(2), 150 - 156.
https://doi.org/10.31392/MFAT-npu26_2.2022.07
A classical result of Norbert Wiener characterises doubly shift-invariant subspaces for square integrable functions on the unit circle with respect to a finite positive Borel measure μ, as being the ranges of the multiplication maps corresponding to the characteristic functions of μ-measurable subsets of the unit circle. An analogue of this result is given for the Besicovitch Hilbert space of `square integrable almost periodic functions'.
| Item Type | Article |
|---|---|
| Copyright holders | © 2022 The Author |
| Departments | LSE > Academic Departments > Mathematics |
| DOI | 10.31392/MFAT-npu26_2.2022.07 |
| Date Deposited | 25 Mar 2022 |
| Acceptance Date | 23 Mar 2022 |
| URI | https://researchonline.lse.ac.uk/id/eprint/114469 |
Explore Further
- https://www.lse.ac.uk/Mathematics/people/Amol-Sasane (Author)
- https://www.scopus.com/pages/publications/85152404211 (Scopus publication)
- http://mfat.imath.kiev.ua/article/?id=1790
- http://mfat.imath.kiev.ua/ (Official URL)
ORCID: https://orcid.org/0000-0001-5566-9877
