Hurwitz generation in groups of types F4, E6 2E6, E7 and E8

Pierro, EmilioORCID logo (2022) Hurwitz generation in groups of types F4, E6 2E6, E7 and E8. Journal of Group Theory, 25 (4). 753 - 780. ISSN 1433-5883
Copy

A Hurwitz generating triple for a group G is an ordered triple of elements (x, y, z) ∈G3 where x2 = y3 = z7 = xyz = 1 and (x, y, z) = G. For the finite quasisimple exceptional groups of types F4, E6, 2E6, E7 and E8, we provide restrictions on which conjugacy classes x,y and z can belong to if (x, y, z) is a Hurwitz generating triple. We prove that there exist Hurwitz generating triples for F4(3), F4(5), F4(7), F4(8), E6(3) and E7 (2), and that there are no such triples for F4 (23n -2), F4 (23n - 1), E6 (73n - 2), E6 (73n - 1), SE6 (7n) or 2E6(7n) when n ≥ 1.

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads