A duality based 2-approximation algorithm for maximum agreement forest

Olver, NeilORCID logo; Schalekamp, Frans; van der Ster, Suzanne; Stougie, Leen; and van Zuylen, Anke A duality based 2-approximation algorithm for maximum agreement forest Mathematical Programming, 198 (1). 811 - 853. ISSN 0025-5610
Copy

We give a 2-approximation algorithm for the Maximum Agreement Forest problem on two rooted binary trees. This NP-hard problem has been studied extensively in the past two decades, since it can be used to compute the rooted Subtree Prune-and-Regraft (rSPR) distance between two phylogenetic trees. Our algorithm is combinatorial and its running time is quadratic in the input size. To prove the approximation guarantee, we construct a feasible dual solution for a novel exponential-size linear programming formulation. In addition, we show this linear program has a smaller integrality gap than previously known formulations, and we give an equivalent compact formulation, showing that it can be solved in polynomial time.

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads