Cluster point processes and Poisson thinning INARMA

Chen, Zezhun; and Dassios, AngelosORCID logo (2022) Cluster point processes and Poisson thinning INARMA. Stochastic Processes and Their Applications, 147. 456 - 480. ISSN 0304-4149
Copy

In this paper, we consider Poisson thinning Integer-valued time series models, namely integervalued moving average model (INMA) and Integer-valued Autoregressive Moving Average model (INARMA), and their relationship with cluster point processes, the Cox point process and the dynamic contagion process. We derive the probability generating functionals of INARMA models and compare to that of cluster point processes. The main aim of this paper is to prove that, under a specific parametric setting, INMA and INARMA models are just discrete versions of continuous cluster point processes and hence converge weakly when the length of subintervals goes to zero.

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads