Understanding Bayesianism:fundamentals for process tracers

Bennett, Andrew; Charman, Andrew E.; and Fairfield, TashaORCID logo (2022) Understanding Bayesianism:fundamentals for process tracers Political Analysis, 30 (2). 298 - 305. ISSN 1047-1987
Copy

Bayesian analysis has emerged as a rapidly expanding frontier in qualitative methods. Recent work in this journal has voiced various doubts regarding how to implement Bayesian process tracing and the costs versus benefits of this approach. In this response, we articulate a very different understanding of the state of the method and a much more positive view of what Bayesian reasoning can do to strengthen qualitative social science. Drawing on forthcoming research as well as our earlier work, we focus on clarifying issues involving mutual exclusivity of hypotheses, evidentiary import, adjudicating among more than two hypotheses, and the logic of iterative research, with the goal of elucidating how Bayesian analysis operates and pushing the field forward.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads