Discounted optimal stopping zero-sum games in diffusion type models with maxima and minima

Gapeev, Pavel V.ORCID logo Discounted optimal stopping zero-sum games in diffusion type models with maxima and minima. Advances in Applied Probability. ISSN 0001-8678
Copy

We present a closed-form solution to a discounted optimal stopping zero-sum game in a model based on a generalised geometric Brownian motion with coefficients depending on its running maximum and minimum processes. The optimal stopping times forming a Nash equilibrium are shown to be the first times at which the original process hits certain boundaries depending on the running values of the associated maximum and minimum processes. The proof is based on the reduction of the original game to the equivalent coupled free-boundary problem and the solution of the latter problem by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are partially determined as either unique solutions to the appropriate system of arithmetic equations or unique solutions to the appropriate first-order nonlinear ordinary differential equations. The results obtained are related to the valuation of the perpetual lookback game options with floating strikes in the appropriate diffusion-type extension of the Black-Merton-Scholes model.

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads