Compound sequential change-point detection in parallel data streams

Chen, YunxiaoORCID logo; and Li, Xiaoou (2023) Compound sequential change-point detection in parallel data streams. Statistica Sinica, 33 (1). 453 - 474. ISSN 1017-0405
Copy

We consider sequential change-point detection in parallel data streams, where each stream has its own change point. Once a change is detected in a data stream, this stream is deactivated permanently. The goal is to maximize the normal operation of the pre-change streams, while controlling the proportion of post-change streams among the active streams at all time points. Taking a Bayesian formulation, we develop a compound decision framework for this problem. A procedure is proposed that is uniformly optimal among all sequential procedures which control the expected proportion of post-change streams at all time points. We also investigate the asymptotic behavior of the proposed method when the number of data streams grows large. Numerical examples are provided to illustrate the use and performance of the proposed method.

picture_as_pdf

picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads