Multi-label prediction for political text-as-data

Erlich, Aaron; Dantas, Stefano G.; Bagozzi, Benjamin E.; Berliner, DanielORCID logo; and Palmer-Rubin, Brian Multi-label prediction for political text-as-data. Political Analysis, 30 (4). 463 - 480. ISSN 1047-1987
Copy

Political scientists increasingly use supervised machine learning to code multiple relevant labels from a single set of texts. The current "best practice"of individually applying supervised machine learning to each label ignores information on inter-label association(s), and is likely to under-perform as a result. We introduce multi-label prediction as a solution to this problem. After reviewing the multi-label prediction framework, we apply it to code multiple features of (i) access to information requests made to the Mexican government and (ii) country-year human rights reports. We find that multi-label prediction outperforms standard supervised learning approaches, even in instances where the correlations among one's multiple labels are low.

picture_as_pdf

picture_as_pdf
subject
Accepted Version
Available under Creative Commons: Attribution-NonCommercial-No Derivative Works 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads