The max-flow min-cut property and ±1-resistant sets

Abdi, AhmadORCID logo; and Cornuejols, Gerard (2021) The max-flow min-cut property and ±1-resistant sets. Discrete Applied Mathematics, 289. 455 - 476. ISSN 0166-218X
Copy

A subset of the unit hypercube {0, 1}n is cube-ideal if its convex hull is described by hypercube and generalized set covering inequalities. In this paper, we provide a structure theorem for cube-ideal sets S ⊆ {0, 1}n such that, for any point x ∈ {0, 1}n , S − {x} and S ∪ {x} are cube-ideal. As a consequence of the structure theorem, we see that cuboids of such sets have the max-flow min-cut property.

picture_as_pdf

picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads