Exact Ramsey numbers of odd cycles via nonlinear optimisation

Jenssen, Matthew; and Skokan, JozefORCID logo (2021) Exact Ramsey numbers of odd cycles via nonlinear optimisation Advances in Mathematics, 376: 107444. ISSN 0001-8708
Copy

For a graph G, the k-colour Ramsey number R k(G) is the least integer N such that every k-colouring of the edges of the complete graph K N contains a monochromatic copy of G. Let C n denote the cycle on n vertices. We show that for fixed k≥2 and n odd and sufficiently large, R k(C n)=2 k−1(n−1)+1. This resolves a conjecture of Bondy and Erdős for large n. The proof is analytic in nature, the first step of which is to use the regularity method to relate this problem in Ramsey theory to one in nonlinear optimisation. This allows us to prove a stability-type generalisation of the above and establish a correspondence between extremal k-colourings for this problem and perfect matchings in the k-dimensional hypercube Q k.

picture_as_pdf

picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads