Finding tight Hamilton cycles in random hypergraphs faster

Allen, PeterORCID logo; Koch, Christoph; Parczyk, Olaf; and Person, Yury (2020) Finding tight Hamilton cycles in random hypergraphs faster Combinatorics, Probability and Computing. ISSN 0963-5483
Copy

In an r-uniform hypergraph on n vertices, a tight Hamilton cycle consists of n edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of r vertices. We provide a first deterministic polynomial-time algorithm, which finds a.a.s. tight Hamilton cycles in random r-uniform hypergraphs with edge probability at least C log 3 n/n. Our result partially answers a question of Dudek and Frieze, who proved that tight Hamilton cycles exist already for p = ω(1/n) for r = 3 and p = (e + o(1))/n for r ≽ 4 using a second moment argument. Moreover our algorithm is superior to previous results of Allen, Böttcher, Kohayakawa and Person, and Nenadov and Škorić, in various ways: the algorithm of Allen et al. is a randomized polynomial-time algorithm working for edge probabilities p ≽ n −1+ ε, while the algorithm of Nenadov and Škorić is a randomized quasipolynomial-time algorithm working for edge probabilities p ≽ C log 8 n/n.

picture_as_pdf

picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads