On the existence of spatially tempered null solutions to linear constant coefficient PDES

Sasane, AmolORCID logo (2021) On the existence of spatially tempered null solutions to linear constant coefficient PDES Israel Journal of Mathematics, 244 (1). pp. 273-291. ISSN 0021-2172
Copy

Given a linear, constant coefficient partial differential equation in ℝd+1, where one independent variable plays the role of ‘time’, a distributional solution is called a null solution if its past is zero. Motivated by physical considerations, distributional solutions that are tempered in the spatial directions alone (with no restriction in the time direction) are considered. An algebraic-geometric characterization is given, in terms of the polynomial describing the PDE, for the null solution space to be trivial (that is, consisting only of the zero distribution).

picture_as_pdf

picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads