Idealness of k-wise intersecting families

Abdi, AhmadORCID logo; Cornuéjols, Gérard; Huynh, Tony; and Lee, Dabeen (2020) Idealness of k-wise intersecting families In: Integer Programming and Combinatorial Optimization - 21st International Conference, IPCO 2020, Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) . Springer Berlin / Heidelberg, 1 - 12. ISBN 9783030457709
Copy

A clutter is k-wise intersecting if every k members have a common element, yet no element belongs to all members. We conjecture that every 4-wise intersecting clutter is non-ideal. As evidence for our conjecture, we prove it in the binary case. Two key ingredients for our proof are Jaeger’s 8-flow theorem for graphs, and Seymour’s characterization of the binary matroids with the sums of circuits property. As further evidence for our conjecture, we also note that it follows from an unpublished conjecture of Seymour from 1975.

picture_as_pdf

picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads