Jump or kink: note on super-efficiency in segmented linear regression break-point estimation

Chen, YiningORCID logo (2020) Jump or kink: note on super-efficiency in segmented linear regression break-point estimation Biometrika. ISSN 0006-3444
Copy

We consider the problem of segmented linear regression with a single breakpoint, with the focus on estimating the location of the breakpoint. If $n$ is the sample size, we show that the global minimax convergence rate for this problem in terms of the mean absolute error is $O(n^{-1/3})$. On the other hand, we demonstrate the construction of a super-efficient estimator that achieves the pointwise convergence rate of either $O(n^{-1})$ or $O(n^{-1/2})$ for every fixed parameter value, depending on whether the structural change is a jump or a kink. The implications of this example and a potential remedy are discussed.

picture_as_pdf

picture_as_pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads