Games of incomplete information and myopic equilibria

Simon, Robert; Spiez, S; and Torunczyk, H (2021) Games of incomplete information and myopic equilibria. Israel Journal of Mathematics, 241 (2). 721 - 748. ISSN 0021-2172
Copy

We consider a finitely defined game where the payoff for each player at each terminal point of the game is not a fixed quantity but varies according to probability distributions on the terminal points induced by the strategies chosen. We prove that if these payoffs have an upper-semi- continuous and convex valued structure then the game has an equilibrium. For this purpose the concept of a myopic equilibrium is introduced, a con- cept that generalizes that of a Nash equilibrium and applies to the games we consider. We answer in the affirmative a question posed by A. Neyman: if the payoffs of an infinitely repeated game of incomplete information on one side are a convex combination of the undiscounted payoffs and payoffs from a finite number of initial stages, does the game have an equilibrium?

picture_as_pdf

picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads