Income and wealth distribution in macroeconomics: a continuous-time approach

Achdou, Y., Han, J., Lasry, J. M., Lions, P. L. & Moll, B.ORCID logo (2017). Income and wealth distribution in macroeconomics: a continuous-time approach. (NBER Working Paper 23732). National Bureau of Economic Research. https://doi.org/10.3386/w23732
Copy

We recast the Aiyagari-Bewley-Huggett model of income and wealth distribution in continuous time. This workhorse model – as well as heterogeneous agent models more generally – then boils down to a system of partial differential equations, a fact we take advantage of to make two types of contributions. First, a number of new theoretical results: (i) an analytic characterization of the consumption and saving behavior of the poor, particularly their marginal propensities to consume; (ii) a closed-form solution for the wealth distribution in a special case with two income types; (iii) a proof that there is a unique stationary equilibrium if the intertemporal elasticity of substitution is weakly greater than one; (iv) characterization of “soft” borrowing constraints. Second, we develop a simple, efficient and portable algorithm for numerically solving for equilibria in a wide class of heterogeneous agent models, including – but not limited to – the Aiyagari-Bewley-Huggett model.

Full text not available from this repository.

Export as

EndNote BibTeX Reference Manager Refer Atom Dublin Core JSON Multiline CSV
Export