Resistant sets in the unit hypercube

Abdi, AhmadORCID logo; Cornuéjols, Gérard; and Lee, Dabeen (2020) Resistant sets in the unit hypercube Mathematics of Operations Research, 46 (1). ISSN 0364-765X
Copy

Ideal matrices and clutters are prevalent in Combinatorial Optimization, ranging from balanced matrices, clutters of T-joins, to clutters of rooted arborescences. Most of the known examples of ideal clutters are combinatorial in nature. In this paper, rendered by the recently developed theory of cuboids, we provide a different class of ideal clutters, one that is geometric in nature. The advantage of this new class of ideal clutters is that it allows for infinitely many ideal minimally non-packing clutters. We characterize the densest ideal minimally non-packing clutters of the class. Using the tools developed, we then verify the Replication Conjecture for the class.

picture_as_pdf

picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads