Intersecting restrictions in clutters

Abdi, AhmadORCID logo; Cornuejols, Gerard; and Lee, Dabeen (2020) Intersecting restrictions in clutters Combinatorica, 40 (5). 605 - 623. ISSN 0209-9683
Copy

A clutter is intersecting if the members do not have a common element yet every two members intersect. It has been conjectured that for clutters without an intersecting minor, total primal integrality and total dual integrality of the corresponding set covering linear system must be equivalent. In this paper, we provide a polynomial characterization of clutters without an intersecting minor. One important class of intersecting clutters comes from projective planes, namely the deltas, while another comes from graphs, namely the blockers of extended odd holes. Using similar techniques, we provide a poly- nomial algorithm for finding a delta or the blocker of an extended odd hole minor in a given clutter. This result is quite surprising as the same problem is NP-hard if the input were the blocker instead of the clutter.

picture_as_pdf

picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads