Packing odd T-joins with at most two terminals

Abdi, AhmadORCID logo; and Guenin, Bertrand (2018) Packing odd T-joins with at most two terminals Journal of Graph Theory, 87 (4). pp. 587-652. ISSN 0364-9024
Copy

Take a graph G, an edge subset Σ ⊆ E(G), and a set of terminals T ⊆V(G) where |T| is even. The triple (G,Σ,T) is called a signed graft. A T-join is odd if it contains an odd number of edges from Σ. Let ν be the maximum number of edge-disjoint odd T-joins. A signature is a set of the form Σ△δ(U) where U ⊆V(G) and |U∩T| is even. Let τ be the minimum cardinality a T-cut or a signature can achieve. Then v≤ τ and we say that (G, Σ, T) packs if equality holds here. We prove that (G, Σ, T) packs if the signed graft is Eulerian and it excludes two special nonpacking minors. Our result confirms the Cycling Conjecture for the class of clutters of odd T-joins with at most two terminals. Corollaries of this result include, the characterizations of weakly and evenly bipartite graphs, packing two-commodity paths, packing T-joins with at most four terminals, and a new result on covering edges with cuts.

picture_as_pdf

picture_as_pdf
subject
Accepted Version

Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads